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The challenge and promise of utilizing epigenetic and biomarker data to explore the impact 

of prenatal exposures on offspring health are highlighted in the recent publication by Xu et 

al. [1], “Contrasting association of maternal plasma biomarkers of smoking and one-carbon 

micronutrients with offspring DNA methylation: Evidence of AHRR [aryl hydrocarbon 

receptor repressor] gene-smoking-folate interaction.” The authors found that maternal 

smoking (indicated by measured blood hydroxycotinine and cotinine) was associated with 

AHRR hypomethylation in offspring (cord blood) and this effect was strongest among new 

mothers with low serum folate concentrations [1]. The link between AHRR hypomethylation 

as a marker of cigarette exposure (both among smokers and their newborns’ cord blood) 

is well established; subsequent long-term risk of lung cancer, heart disease, and other 

illnesses is a substantial concern [2–4]. Achieving adequate folate status during pregnancy is 

already an established clinical and public health recommendation; the potential of a simple 

intervention to mitigate the risks associated with smoking (in addition to avoidance) or other 

toxic exposures [5] would be of substantial public health benefit.

Inadequate folate status is deleterious, increasing the risk of adverse outcomes across 

the lifespan from birth defects to cancers [6]. One-carbon metabolites, including folate, 

are critical for basic processes from detoxification to DNA and RNA replication and 

methylation [7]. Smoking introduces a number of harmful substances into the body, 

and many of these are metabolized and cleared in processes dependent on one-carbon 

metabolism [6,7]. Failure to account for nutrient status (specifically one-carbon pathway 

components, such as vitamin B12 and folate) may account for the lack of replication 

between studies across disciplines impacted by this pathway. Many studies may only find 

associations in settings or persons with low folate status. This could be because of a 

threshold effect of a simple lack of statistical power when the folate status is high; this was 

observed with homocysteine reduction and heart disease [8] and likely important studies 
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of smoking and clefts [9] among others. Folic acid intake at recommended levels has been 

shown in studies to mitigate autism risk associated with phthalates [10] and air pollution 

[11]. This suggests that there is biological plausibility to the mitigation of the impact of 

smoking on AHRR methylation through adequate maternal folate status.

Epigenetic data can be particularly difficult to analyze and interpret in nutritional and 

environmental epidemiological studies. Best practices in analyzing epigenetic data are 

evolving. Epigenetic data are often analyzed either using M-values (unbound measure of 

methylation with 0 being 50% methylation) or beta-values (values bound from 0 to 1 

where 1 is 100% methylated) [12]. Running epigenetic analyses using M-values has been 

shown to be more statistically valid, performing better in Detection Rate and True Positive 

Rate, whereas beta-values can allow for easier interpretation [12]. Conducting both types of 

techniques and having similar results increases confidence in findings, as was done in the Xu 

et al. analysis.

In both nutritional and environmental epidemiology, exposure mixtures occur frequently. 

Nutrients do not act alone and are not consumed or metabolized in isolation. Robust 

techniques to assess these interactions are needed. The authors utilized 2 robust methods 

to analyze exposure mixture of folate and smoking biomarkers. Bayesian kernel machine 

regression (BKMR) is an established robust and flexible method of analyzing exposure 

mixtures [13]. BKMR plots showed an overall effect of vitamin B6, folate, vitamin B12, 

and hydroxycotinine/cotinine on methylation, with overall decreases in methylation as the 

exposure mixture increases. Stratification of BKMR analysis by either vitamin B6, folate, 

or vitamin B12 might help provide some limited information on the relative contributions 

of each individual component in the exposure mixture. The inclusion of quantile-based 

g-computation (QGC)—relatively recent method in examining exposure mixture and has 

been recently used in epigenetic analyses—allows for a deeper understanding on individual 

components within an exposure mixture [14]. Unlike BKMR, QGC provides information on 

the directionality of individual components with the exposure mixture. In this analysis, 

QGC highlights the potentially protective effects of folate and B6 in the exposure 

mixture while also validating the overall decrease in methylation as the exposure mixture 

increases from BKMR. Although individually, BKMR and QGC are powerful methods for 

analyzing exposure mixtures, using them in tandem not only provides cross-validation of 2 

methodologies but also provides different aspects on how individual components contribute 

to the exposure mixture. Further improvements in analytic approaches to exposure mixtures 

will help elucidate the relative contributions of various nutrients.

Many robust data sources (epidemiologic studies of exposures and outcomes, basic science, 

statistical and clinical studies) are needed to understand the interactions of adverse 

exposures during pregnancy and long-term health risks across the lifespan. Although 

elimination of high-risk exposures is ideal, the possibility of mitigating strategies, such 

as optimized nutrient status, that may apply across a range of exposures is promising.

Abbreviations:

AHRR aryl hydrocarbon receptor repressor
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BKMR Bayesian kernel machine regression

QGC Quantile-based g-computation
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